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I Introduction 

This report discusses the application of a multigrid algorithm to the solution of the following one 

dimensional singular perturbation problem: 

- E d r  + b(z)u' = f ,  0 < 2 < 1 (1) 

with 

1 >> E > 0, u(0) = 110, u(l) = Ul. 

Many other authors have discussed the application of various methods of solution to the alge- 

braic problem; in particular see Dorr [Dorr70a], Babuska [BabuSga], Ervin and Layton [Ervi85a], 

and Kellogg and Tsan [Ke1178a]. 

Much of the literature regarding multigrid methods restricts itself to the solution of nice prob- 

lems. Indeed most authors require that the linear system be well conditioned in addition to symmet- 

ric and positive definite. However, in the case of singular perturbation problems as the coefficient of 

the second order term tends to zero the usual symmetric discretization fails to be of positive type. 

Thus the first measure taken in the numerical discretization of these problems is to replace the usual 

symmetric difference of the first order term with some form of skewed differencing. In particular 

for problems with turning points this may lead to a system of equations which is ill-conditioned 

for small e. 

From the standpoint of calculating a numerical approximation to the solution of problem (1) 

the Erst questic~ is: dries the discret.ization converge to the continuous solution? Then, assuming 

it does, how does the multigrid algorithm perform as a solver for this system of linear equations? 

What modifications, if any, are necessary in the multigrid algorithm? 

The main result shows that if the original system of equations resulting from the discretization 

of problem (1) is of positive type then the theoretical results for the multigrid algorithm developed 

in Kamowitz and Parter [Kamo85a] and in McCormick and Ruge [McCo82a] apply. 

From a computational perspective it is convenient to use for the coarse grid operators of the 

multigrid algorithm the operators that are the finite difference analogue of the original operator. 

In Section 6 the rate of convergence of the algorithm using the finite difference version of the coarse 

grid operators is considered. It is shown that the new rate of convergence is an O(h2) perturbation 

of the rate obtained using the Gaierkin choice. 

I 
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2 The Discrete Problem 

Three model problems are chosen for study, one where the sign of b ( z )  does not change and two 

where b ( z )  changes sign. The three problems are designated 

Problem BL 

( 2 )  
II I L U E - s u  + u  = 0 ,  O < x < l  

Problem TP-I 
1 
2 

Lu E -&Ull + (x - -)u‘ = 0,  0 < x < 1 

Problem TP-2 
I f  1 Lu = -&U - (z - -)u’ = 0 0 < z < 1. 

2 

(3) 

(4) 

For all three problems the boundary conditions are 

u(0)  = 1, u ( l )  = 3 .  

For the discrete problem as usual let N > 0 be chosen and set h = 1/(N + 1). The interval 

R = (0’1) 

is discretized to form 

E { i h  : 1 5  i 5 N}. 

The notation xi refers to the point ih and u; refers to  u(z i ) .  In addition the usual notation for 

finite differences is used: 

U i + l  - ui-1 u;+1 - 2ui + ui-1 
h2 D+D-u; = 

2h ’ DOU; = 

For problem (BL) the following two discretizations are considered: 

Liu; E -&D+D-u; + D-ui (upwind differencing) 

-& 
LZU. = D+D-u;  + D-ui (see Kellogg and Tsan). 

1 + h / 2 ~  h I -  
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Since problems (TP- I )  and (TP-2)  have turning points at z = f it  is necessary to change the 

direction of the discretization of the first order term. For problem (TP- I )  the discretization tested 

is 

(7) 

(8 )  

N + l  
2 

L 4 u - =  - E D + D - u ~  - (xi - ~ ) D - u ; ,  1 5 i 5 - h 1 -  

N + l  + 1 5  i 5 N. 
2 L ~ u ;  --ED+D-u; - (z; - ~ ) D + u ; ,  

Note that each of the discretizations L i ,  k = 1 , .  . . , 4  results in a tridiagonal linear system of 

equations whose coefficient matrix may be denoted by 

L; 3 [ -CY; pi -7i 1, 
with 

CY; 2 0,  7i 2 0, and p; 2  CY^ + 7;. 

Thus each L;, k = 1 , .  . . , 4  is an M-matrix and the linear system of equations 

uo and u ~ + 1  fixed has a solution; see for example Berman and Plemmons [Berm79a]. 

3 Review of the Multigrid Algorithm 

The particular multigrid algorithm used to solve (1) has been discussed in detail in Kamowitz and 

Parter [Kamo85a]; thus only a cursory review is given here. In particular the details of the theory 

behind the convergence results can be found there. What is important to realize is that although 

the algorithm and convergence results discussed in the previous work apply to well conditioned two 

point boundary value problems the same bounds on the rate of convergence apply to the singular 

perturbation problems discussed here. 

In order to completely describe the algorithm a number of spaces and operators need to be 

defined. For the various spaces choose g nested grids 
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where 

p = 2 9 - 1 .  

Denote by Skh the space of grid functions defined on Rkh. From now on the notation kh will be 

replaced by k .  Denote by Gk the smoother, 1;" the restriction map, and I:+l the interpolation 

map. Associated with each space s k  there is also a nonsingular tridiagonal operator 

where Lk is of positive type. The operators Lk are again denoted 

These operators will be formally defined after the statement of the algorithm. 

The following is an outline of the algorithm used. Assuming Ui' is the nth approximation to 

the solution of the system of equations 

LlUl = F1 

algorithm MG(UF, Lk, Fk, k )  returns U;", the next iteration of the multigrid algorithm. The grid 

layer is denoted by k; set k = 1 to start the algorithm on the finest grid layer. 

Algorithm MG( UL, Lk , F k ,  k )  
1. Coarse Solve: If k = g (coarsest grid) then return 

MG t Lg-' Fg 
otherwise 

2. Smooth: Apply the smoother, Gk, call the result of this step 0;. 

3. Recursively Apply the Algorithm: Set 

4. (optional) Smooth Again: Set Un+' e GkUnf' .  
5. Return: Set M G  t Un+l .  

If k = 1 use UF as the initial guess, otherwise use 0. 

Un+l + fi; + I;+,MG(O, Lk+l, I t f1(Fk - LkCr) ,  k + 1). 

As defined algorithm MG is called a symmetric V-cycle if step 4 is used; otherwise algorithm 

MG is referred to as a slash cycle (following the notation of McCormick and Ruge). 

For the smoother, G, choose m-applications of damped Jacobi iteration with parameter a. 

Formally, repeat for 1 5 r 5 rn 

LU') j .  

The interpolation operator, is defined as follows. For points common to n k + l  and to Rk 

set 

I~i+luIz j  = 
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and at odd (new) points of Rk require 

This results in the explicit system of equations at the point 5 2 j - I  

The restriction operator, I:", is 

Note that if Lk is symmetric then 
1 T 
2 

IL+l = -(I;+l) . 

A fundamental observation due to McCormick and Ruge [McCo82a] in the symmetric case is that 

s k  can be written 

S k  = Range I:+~ e Nullspace I;+lLk. (9) 

For non-symmetric problems the above decomposition follows directly from the characterization of 

Range I;+l and Nullspace IL+'Lk; see Kamowitz and Parter. 

Finally the coarse grid operators, Lk+l, are chosen by setting 

A direct computation shows that 

Lk+l = [ -.k+' p:" -7;" ] I 

with 

Note that the choice of i k + l  is the 'natural' choice; however it is not the only feasible choice for 



3.1 Convergence Theory 

For completeness some results from [Kamo85a] are repeated. 

Let I 

E" = ut,, - U" I 

t 
be the error in the nth iterate. Here Ut,., corresponds to the true solution of the algebraic problem 

The rate of improvement of the nth iterate of algorithm MG is then 

To estimate p,  the asymptotic rate as n 00, one needs to bound the p". 

For later use define 

llzllih E (Lhz ,  z) = ( L h z ) j z j .  
i 

First the two grid process is considered. Given an initial error 

Eo = Ut,, - uo, 

the two grid process yields: 

1. Smoothing 
eo --+ zo = G'c0 

where G' corresponds to the linear part of the smoother G. Note that from (9) 

2. Restricting the residual rh = Lhzo to  n 2 h  yields 

since 

17 E Nullspace I i h L h .  
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3. Computing the coarse grid correction directly (as is the case for the two grid algorithm) is 

equivalent to solving 

L2h$2h = R 2 h  = 2 2 h w 2 h .  

4. Finally, correcting Eo using the coarse grid correction yields E': 

Note that if 

zo E S2h 

then one step of the two grid procedure solves the problem! In general, since IIG'II 5 1 the rate p' 

satisfies 

In this case 
1 E = r )  

so 

Notice that the r) term is related to  the action of the smoother while the I t h w 2 h  term is eliminated 

by the multigrid process itself. 

In Kamowitz and Parter [Kamo85a] an explicit decomposition of s h  was found in t e i r i  of the 

eigenvalues and eigenvectors of the damped Jacobi scheme. This decomposition was exploited to 

compute bounds on the rate of convergence. 

For the two grid scheme, the bounds on p, for a given m and a,  are given in Table 1. Note that 
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m 

Table 1: Predicted Rates for 2 Grids 

a 
.333 I .500 I .667 I .750 I 1.00 I 1.333 

m a 
.333 I .500 I .667 I .750 I 1.00 I 1.333 

il 

Table 2: Predicted Asymptotic Rate 

the optimal rate is obtained for a = .5. In the succeeding sections the bound in the a = .5 case will 

be obtained experimentally for problems (BL) ,  (TP- I ) ,  and (TP-2) .  

In the case where the number of grids is arbitrary, estimates based on the ideas in [McCo82a] 

are given in Table 2. As indicated in [Kamo85a] these bounds are not sharp. 

4 The Singular Perturbation Case 

For the study of singular perturbation problems it is necessary that if Lh is an M-matrix then the 

coarse grid operators Lk+l, k = 1,2 , .  . . are also M-matrices. This is necessary to insure that each 

subproblem 

Lk+l$k+l = fk+l 

is solvable. In particular since the smoother Gk+1 depends on L k + l ,  then if L k + l  is an M-matrix, 

IIGk+lll < 1- 

Lemma 4.1 If 
Lk = [ -a! 3 p; -7; ] 

is an M-Matrix then 

Lk+l = [ -a;+1 p;+1 -7;+1 ] 

is also an M-matriz, where ai+', /$+' and 7;" are given by equations (10-12). 
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Proof: The hypotheses that Lk is an M-matrix insures that 

aj k > 0, Pj" > 0, and7; > 0 

so a;" and 7;" are also positive. In addition, $+' must satisfy 

Recalling the expressions for a;, and 7; note that this is equivalent to requiring 

which follows directly from the fact that Lk is diagonally dominant. 

Since each of the Lk+l is an M-matrix, the theory developed in Section 3.1 can be applied in 

the singular perturbation case. 

5 Experimental Results 

The algorithm of the previous sections was applied to problems (BL) ,  (TP-I )  and (TP-2) .  Prob- 

h i  (GL) exhibits a boiirdarj. !rzj.cr at z = I. Frsm a ramputntional point of view the system of 

linear equations that is solved is well conditioned even for small E ;  however the fact that the linear 

system is not symmetric leads to computational difficulties in computing the experimental rate of 

convergence. 

In the case of problem ( T P - j )  there are two boundary layers; at 1: = 0 and at 1: = 1. In addition 

the system of equations that is solved is ill-conditioned. 

The discrete problem corresponding to problem (TP-2)  is well conditioned. The fact that there 

is an interior turning point a t  1: = 1/2 does not appear to lead to computational difficulties. 

By using the one sided difference schemes discussed in the previous section the linear systems 

arising from the discretization of the problems are of positive type. 

From a practical standpoint, however, what eifect does the ill-conditioning have en the observed 

solution? In particular, how should the rate of convergence (reduction in the error) be measured? 
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5.1 

In all the experiments N, the number of points on the fine grid, was 63. The initial guess, Uo, was 

constructed so that the initial error could be chosen in advance. In other words, 

General Remarks Regarding the Experiments 

u; I= U ( Z j )  - E j .  

For the experiments discussed here 

E j  = (-1)j. 

The number of smoothing steps for the experiments discussed here was set to one. Experi- 

ments were run where the number of smoothing steps was greater than one. When more than one 

smoothing step was used there was no observed qualitative difference in the behavior of the algo- 

rithm compared to the behavior for non-singular perturbation problems. Unless otherwise noted 

the results are for the two grid case. The computer used was a VAX-11/780 and the tests were run 

in double precision (roughly 16 decimal digits of accuracy). 

The damped Jacobi parameter, a ,  was chosen to be .5. The following heuristic argument due 

to Brandt [Bran77a] suggests why a = .5 is optimal for one smoothing step. His suggestion is 

to choose a so that the range of eigenvalues which are reduced by the damped Jacobi process is 

equal to the range which is left alone by the process. As noted in [Kamo85a] the eigenvalues of the 

damped Jacobi scheme come in pairs A(p) and i ( p )  where 

A a - p  
and A(p) = - 

l + a  
CL+a 

= l+a 
and p are the eigenvalues of the scheme for a = 0. The eigenvalues p are real and distinct and as 

h + 0 they fill out the interval [0,1]. Brandt's requirement corresponds to choosing a so that 

-A(-1) = A(0) 

or in other words to taking a = 1/2. Note that this is equivalent to requiring 

-i(1) = i(0). 

Indeed in [Kamo85a] for 1 smoothing step the theoretical and experimental results indicate that 

this choice of a is optimal. 

5.2 Results for the Boundary Layer Problem 

For problem (BL) the solution to the analytic problem can be calculated explicitly. For all E > 0 

the solution ur(z )  is 

ue(z) = C&" + c,. 
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Grid 
1 
2 
3 
4 
5 
6 

Table 3: Condition Number - Problem BL 

E: 

1 .1 .01 .005 .003 .001 0 
.62 x ~ O - ~  .ll xlO-’ .54 xlO-’ .73 xlO-’ .86 xlO-’ .011 .012 
.25 x10M2 .45 x ~ O - ~  .18 x10-1 .21 x10-’ .28 x10-’ .027 .024 
.98 x ~ O - ~  .12 x10-1 .37 x10-1 .44 x10-’ .46 x10-1 .048 .048 
.39 x10-1 .41 x10-1 .80 x10-1 .92 x10-1 .96 x10-’ .099 .1 

.15 .15 .19 .20 .21 .21 .21 
1 1 1 1 1 1 1 

The constants C1 and C2 satisfy 

Note that 

so 

lim C1 = 0, lim C2 = 1 
e-rO €40 

Denote by Uh,€(z )  the numerical solution of problem (BL) for a fixed h and E. The consistency 

condition on the solution then requires that for fixed E 

lim U,,,b (z) = u, (z) . 
h-0 

Dorr [Dorr70a] proved that for fixed h 

lirnUh,e(z) = I. 
e 4 0  

The discretization of problem (BL)  using Li (standard upwind differencing) results in an a p  

proximation to the true solution which is an O(h) approximation. To improve on this approximation 
I 

I Kellogg and Tsan point out that the use of 15; results in an O(h2) approximation for E > 0. For 

the reduced problem ( E  = 0)  L; gives an O(h)  approximation. I 

It is important to note that the linear system of equations arising from the discretization of 

Problem (BL) is not ill-conditioned. Table 3 displays the LINPACK [Dong79a] estimate RCOND 

(an estimate of the inverse of the condition number) for Li :  h = 1/64 and E = 1, .01, .005, .003, 

and .001. 

First, some general conclusions about the experimental results. For both L i  and L i  the al- 

gorithm converged to  the solution of the algebraic problem with an asymptotic convergence rate 
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identical to the rate predicted in Section 3.1. Moreover there was no observed qualitative difference 

in the behavior of the algorithm with respect to the choice of L i  or L i .  However, as E 4 0 the 

behavior of the iterates changes dramatically. 

Define 

where 

rn = F - LhU" 

is the residual after the nth iteration and the norm used is the 12 norm. From a computational 

point of view this is a convenient measure of the rate of improvement since one does not know the 

true solution. From past computational experience this ratio is bounded above by the theoretical 

error reduction rate. Indeed for large E ,  say E = 1, this is the case. For small E ,  say E = .001, after 

a small number of iterations R, exceeded the rate predicted in Table 1, and then as n increased Rn 

declined towards the predicted rate; see the solid line in Figure 1. The dashed line will be referred 

to later. In both cases two grids are used. 

An explanation for this behavior is that as the algorithm proceeds the fact that the error is 

being measured in an  asymmetric norm causes problems. The user of the algorithm should be 

careful to note that while in principle all norms on finite dimensional spaces are equivalent the use 

of a symmetric norm results in much better observed behavior of this particular algorithm. 

To demonstrate this hypothesis the problem 

is transformed into the equivalent symmetric problem 

The matrix D is a positive diagonal matrix whose entries are given by 

Applying this transformation to  Lh results in LS, which is now symmetric. The matrix L i  is 
denoted 

Denote by algorithm MG" 

applying algorithm MG' is 

LS, = [ -a;di-l/d; pj -7jdj+l/d; 1. 
algorithm MG applied to problem (13). The error resulting from 

related to the error from applying algorithm MG as follows: 
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Rate of Convergence 
.............................................................................. 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

.............................................................................. 

............................... 

.............................. 

............................... 

............................................................................ I I  .------------------------------------. 
0.30 ............................................................................. 

0.2c i .............................................................................. 

0.00 
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 

Iteration 

Figure 1: R,, for E = .001 
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Lemma 5.1 If E" i s  the  error after t he  nth i tera t ion  of applying algorithm MG t h e n  t h e  n e w  error, 

is related to  t h e  error in the  symmet r i c  problem by 

( M G " ) ( D - ~ E )  = D - ~ M G ~  = D-V+~. 

Proof: By the definition of E", 

E" = TJ - U" 

Applying each step of algorithm MG" to D-lU" results in D-lUn+l as a straightforward calcula- 

tion shows. Hence 

MG" D-lU" = D-'MG U". 

Applying this transformation to the error E" and computing the rates 

results in the more usual behavior displayed by the dashed line in Figure 1. Figure 2 displays the 

location where the maximum norm of the error is taken on versus the iteration number. Notice 

how as the iteration proceeds the location where the maximum occurs 'drifts.' Applying D-l and 

then measuring R, has the effect of 'fixing' the location where the maximum error is taken on. 

Unfortunately the entries of the transformation matrix D satisfy 

as E --t 0 so this is not a stable method for solving this problem in general. 

In summary, for problem (2) where the coefficient matrix was not poorly conditioned but was 

non-symmetric the only computational difficulty was in choosing the norm in which to measure 

the rate of improvement of the algorithm. 

5.3 Turning point Problem - 1 

In this section consider the solution of 

I1 1 
- E U ,  + (z - -)uel 2 = 0, 
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Figure 2: Index of Maximum Error, Problem BL 
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Grid 
1 
2 
3 
4 
5 
6 

1 

.00023 
.0023 
.0096 
.038 
.15 
1 

.1 .01 .005 
.00032 .20 x ~ O - ~  .19 xlO-’ 
.0013 .76 x ~ O - ~  .66 xlO-’ 
.0085 .83 x ~ O - ~  .85 x ~ O - ~  
.037 .46 x10-’ .55 x10-1 
.146 .16 .17 
1 1 1 

.003 
.13 x10-12 
.41 x10-l2 
.80 x ~ O - ~  
.60 x10-1 

.18 
1 

.23 x10-l8 
.60 x1OW2 
.65 x10-’ 

*19 1 // 
Table 4: Condition Number - Problem TP-1 

with 

U E ( 0 )  = 1) UE( l )  = 3. 

This problem has two boundary layers, at  x = 0 and a t  x = 1. The asymptotic solution satisfies 

(see [Krei74a] and [Dorr70a] ) 
lim uB(x) = 2. 
C - 4  

For the discrete problem again 

L ~ U  = F (15) 

is solved where L i  is given by equations (5) and (6). The condition number of Li tends to infinity as 

E + 0 for a fixed h. Table 4 displays the LINPACK estimate RCOND for Li, h = 1/64 and E = 1, 

.01, .005, .003, and .001. It  is important to note that although the operator corresponding to the 

original discretization on the h-grid is ill-conditioned, L k ,  k = 3,4, .  . . are not ill-conditioned. In 

fact in the limiting case where the coarse grid has one point the system of equations to be solved is 

a 1 x 1 system which has condition number 1. This feature of the multigrid algorithm is reassuring 

to the user since it means that the actual system being solved directly in step 1 of algorithm MG 
is well conditioned and no special measures need to be taken. 

Although the coarse grids used in the algorithm do not resolve the boundary layers the algorithm 

still converges. This is because the role of the coarse grids is to solve for the error in the solution, 

rather than to represent the solution itself. The boundary layers are not seen in the expression for 

the error. The observed rate of convergence was independent of the value of E used. 

For all tested values of E the multigrid algorithm converged to the solution computed by Gaus- 

sian Elimination to the algebraic problem. However, the ill-conditioning of the algebraic system 

resulting from the discretization of the continuous problem opens up the question of to what SO- 

lution does the multigrid algorithm converge? Since the original system is ill-conditioned there is 

a family of solutions U for which the residual is small. Indeed for E = .001 the condition number 
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Grid 
1 
2 
3 
4 
5 
6 

Table 5: Condition Number - Problem TP-2 

E 

1 .1 .01 .005 .003 .001 0 
.64 x ~ O - ~  .98 x ~ O - ~  .45 xlO-' .69 xlO-' .89 xlO-' .013 0 
.26 x ~ O - ~  .39 xlO-' .17 x10-' .24 x10-l .28 x10-' .031 0 
.99 xlO-' .ll x10-1 .25 x10-' .33 x10-' .37 x10-' .038 .035 

.039 .040 .063 .080 .089 .095 .096 
.15 .15 .18 .20 .21 .22 .22 
1 1 1 1 1 1 1 

estimate is .71 xlO-'l which is less than the unit roundoff of the VAX-11/780. Thus there is no 

reason to expect that the solution calculated by solving equation (15) is an adequate approximation 

to the solution of the continuous problem. In the experimental runs that was indeed the case and 

both algorithm MG and Gaussian Elimination returned 0 for the solution. 

Since for this problem the error is not skewed as in problem (BL),  it is not surprising to see 

that the ratio of improvements R, are bounded above by the predicted rate from Table 1. This 

can be seen in Figure 3, for E = .001. 

5.4 Turning point Problem - 2 

In this section the solution to 
II 1 ,  - (z - -)uc = 0, - EU, 

2 

is discussed. The asymptotic soiution, see iKreii4aj is 

1 
&(X) = 1, 

%(Z) = 3) 

0 5 x 5 - 2 

- 2 -  < 2 5 1. 
1 

Although one sided differencing, in this case Lt, is used to compute the solution, the system of 

equations that is solved is not ill-conditioned. As in Section 5.3 the LINPACK estimate RCOND 

of the condition number was computed; see Table 5. 

It appears that the condition number is related to the boundary data. For problem (TP- I )  the 

discretization iuses information from the boundary layer to estimate uc(z)  at interior points. The 

boundary data for problem (TP-2) is well represented (no boundary layers) in the interior. 

From the standpoint of the multigrid algorithm again as the grids get coarser the condition 

Also, as for problem ( T P - I )  the rate of convergence of the algorithm was number improves. 
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Figure 3: R, - Problem TP-I,  E = .001 
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independent of the value of E ,  and was identical to the rate predicted in Section 3.1. In addition 

R,, was bounded above by the predicted rate. 

From a computational point of view one would like to choose for the coarse grid operator L2h the 

tridiagonal operator analogous to Lh obtained by finite differences. This choice for L2h will be 

denoted Lii .  For now only the symmetric problem 

with boundary conditions 

u(0) = u(1)  = 0 

is considered. Here p ( z )  is a smooth function. 
! 

Lemma 6.1 The operator Lif is related to &?h b y  

where Ai, Cj depend on p ( z ) ,  p ' ( z )  and p"(z), and Bj = Aj + Cj- 

Proof: Recall that the coefficients of i 2 h  are given in equations (10-12). In particular 

Expanding 

in Taylor series about the point it = (4k - 1)h and collecting terms yields 
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1 p ( g 2  + h2[+P"(5)P(5) - 1 

2 

1 
4 

I -  (.)) 2 ] + m3 - - -  
2p( 5)  + $p"( 5 )  + E h 3  

= -p(Z)  + h2Ak 

where Ak depends on p (  S), p'( S) and p"( 5). 
I A similar calculation yields 

9 k  = rLd + h 2 c k .  

In addition 

The error analysis in Section 3.1 shows that if i 2 h  is not used then the coarse grid correction 

$ah will not equal W 2 h .  Thus a bound on the eigenvalues of the eigenvalue problem 

is needed. 

L e m m a  6.2 The eigenvalues X of 
f d  - - 5 2 h $  

I satisfy 
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Summation by parts yields 

= Kh2 

< o o  

because of the smoothness of p and since 2 po > 0. In addition, since Li t  is positive definite, 

which implies 

X - 12 - K h 2 .  

Therefore 

( A  - 11 5 K h 2 .  

Recall from equation (9) 
-0 - - + IihW2h 

and if ~ t 2 h  is used then 

2 = q .  

In the case where L i i  is used to solve 

the error is denoted P1. Now 
-1 - - + Ith(w2h - $'%h). 

Since Range I&, and Nullspace IihLh are Lh-orthogonal (see (Kamo85al ), 
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Applying Lemmas 6.1 and 6.2, 

where 
112 L f d  -1 A 112 

= (I - L 2 h  ( 2 h )  L 2 h  1' 
A 112 f d -1 A 112 f d  - l *  

The eigenvalues of L 2 h  ( 2h)  L 2 h  are the same as the eigenvalues of ( LZh) L 2 h ,  so by Lemma 6.2 

Therefore 

and 

Recall the rate using ,k2h is 
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so 

pfd 5 p +  Kh2.  

Remark: Although the discussion in the previous section is restricted to  symmetric problems, the 

same result extends to the general two point boundary value problem 

since problem (18) can be rewritten 

where 

The function g(z) is 

- (pi’)’ + EU = 3 

Note that p ,  i? and f are defined since 

P(Z) 2 Po > 0. 

6.1 An Illustration 

As an illustration of the effect of replacing i 2 h  with L i i  consider using for the smoother G in 

algorithm MG one sweep of odd Gauss-Seidel smoothing. In other words 

( G U ) i  = Vi for i = 0 mod 2 

and for i = 1 mod 2 
1 

(G u)i 1 -[aiUi-1+ riui+l+ f i ] .  Pi 

This guarantees that the error Z lies completely in Range&. In other words, the r] term is 0 since 

for i = 0 mod 2 

(Lh$hWZh)i # 0 
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In addition for points z;, with i = 1 mod 2, 

which implies 7; = 0 since vi-1 = q;+1 = 0. 

Thus 
- h  
6 = I2hW2h 

for some q h .  If i 2 h  is used then one iteration of the algorithm results in completely solving the 

problem. 

For a numerical example problem (17) is solved with 

C O d ( X 2 )  p ( z )  = e . 

The right hand side f is chosen so that the the true solution is 

utrW(z) = sin(.rrz). 

As expected when i 2 h  is used the algorithm converges in one step. When L l i  is used then 

the observed rate of convergence corresponds to the Kh2 term of Section 6. Table 6 displays the 

observed rate of convergence versus h for four different choices for the number of grids. The column 

p(h) corresponds to the observed rate of convergence for each value of h. The value of 6(h)  is 

Since the error in the two grid case is O(h2)  one expects that S(h) 4 4 as h 4 0 for two grids. 

Indeed this is the case. The reason why p(h) varies with the number of grids used is that there are 

‘pollution’ effects from not solving each coarse grid equation exactly. In other words 

where the O(h2)  term corresponds to the error made by not using i 2 h .  
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Table 6: Rate using L i i  
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